// // File: foldhaus_app.h // Author: Peter Slattery // Creation Date: 2020-01-01 // #ifndef FOLDHAUS_APP_H #include "../meta/gs_meta_include.h" #include "../meta/gs_meta_lexer.h" #include "engine/foldhaus_serializer.h" #include "../gs_libs/gs_font.h" #include "foldhaus_log.h" #include "interface.h" #include "engine/foldhaus_network_ordering.h" #include "engine/assembly/foldhaus_assembly.h" #include "engine/assembly/foldhaus_assembly_parser.cpp" #include "engine/sacn/foldhaus_sacn.h" #include "engine/uart/foldhaus_uart.h" #include "engine/uart/foldhaus_uart.cpp" typedef struct app_state app_state; typedef struct panel panel; #include "editor/foldhaus_command_dispatch.h" #include "editor/foldhaus_operation_mode.h" // TODO(Peter): something we can do later is to remove all reliance on app_state and context // from foldhaus_pane.h. It should just emit lists of things that the app can iterate over and // perform operations on, like panel_draw_requests = { bounds, panel* } etc. #include "editor/foldhaus_panel.h" #include "engine/animation/foldhaus_animation.h" #include "engine/animation/foldhaus_animation_serializer.cpp" #include "engine/animation/foldhaus_animation_renderer.cpp" struct app_state { gs_memory_arena Permanent; gs_memory_arena* Transient; // Engine // network_protocol NetworkProtocol; streaming_acn SACN; led_system LedSystem; assembly_array Assemblies; animation_system AnimationSystem; event_log* GlobalLog; animation_pattern_array Patterns; // Interface // rect2 WindowBounds; operation_mode_system Modes; input_command_queue CommandQueue; ui_interface Interface; panel_system PanelSystem; panel* HotPanel; }; internal void OpenColorPicker(app_state* State, v4* Address); #include "engine/assembly/foldhaus_assembly.cpp" // BEGIN TEMPORARY PATTERNS internal void TestPatternOne(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { led_strip_list BlumenStrips = AssemblyStripsGetWithTagValue(Assembly, ConstString("assembly"), ConstString("Blumen Lumen"), Transient); led_strip_list RadiaStrips = AssemblyStripsGetWithTagValue(Assembly, ConstString("assembly"), ConstString("Radialumia"), Transient); for (u32 i = 0; i < BlumenStrips.Count; i++) { u32 StripIndex = BlumenStrips.StripIndices[i]; v2_strip StripAt = Assembly.Strips[StripIndex]; for (u32 j = 0; j < StripAt.LedCount; j++) { u32 LedIndex = StripAt.LedLUT[j]; Leds->Colors[LedIndex] = { 255, 0, 0 }; } } for (u32 i = 0; i < RadiaStrips.Count; i++) { u32 StripIndex = RadiaStrips.StripIndices[i]; v2_strip StripAt = Assembly.Strips[StripIndex]; for (u32 j = 0; j < StripAt.LedCount; j++) { u32 LedIndex = StripAt.LedLUT[j]; Leds->Colors[LedIndex] = { 0, 255, 0 }; } } #if 0 for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { v4 LedPosition = Leds->Positions[LedIndex]; float PercentX = RemapClampedR32(LedPosition.x, -150.0f, 150.0f, 0.0f, 1.0f); float PercentY = RemapClampedR32(LedPosition.y, -150.0f, 150.0f, 0.0f, 1.0f); Leds->Colors[LedIndex].R = (u8)(PercentX * 255); Leds->Colors[LedIndex].G = (u8)(PercentY * 255); } #endif } internal void TestPatternTwo(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { r32 PeriodicTime = (Time / PiR32) * 2; r32 ZeroOneSin = (SinR32(PeriodicTime) * .5f) + .5f; r32 ZeroOneCos = (CosR32(PeriodicTime) * .5f) + .5f; pixel Color = { (u8)(ZeroOneSin * 255), 0, (u8)(ZeroOneCos * 255) }; v4 Center = v4{0, 0, 0, 1}; r32 ThetaZ = Time / 2; v4 Normal = v4{CosR32(ThetaZ), 0, SinR32(ThetaZ), 0}; // NOTE(Peter): dont' need to normalize. Should always be 1 v4 Right = V4Cross(Normal, v4{0, 1, 0, 0}); v4 FrontCenter = Center + (Normal * 25); v4 BackCenter = Center - (Normal * 25); r32 OuterRadiusSquared = 1000000; r32 InnerRadiusSquared = 0; for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { v4 Position = Leds->Positions[LedIndex]; v4 ToFront = Position + FrontCenter; v4 ToBack = Position + BackCenter; r32 ToFrontDotNormal = V4Dot(ToFront, Normal); r32 ToBackDotNormal = V4Dot(ToBack, Normal); ToFrontDotNormal = Clamp01(ToFrontDotNormal * 1000); ToBackDotNormal = Clamp01(ToBackDotNormal * 1000); r32 SqDistToCenter = V4MagSquared(Position); if (SqDistToCenter < OuterRadiusSquared && SqDistToCenter > InnerRadiusSquared) { if (XOR(ToFrontDotNormal > 0, ToBackDotNormal > 0)) { Leds->Colors[LedIndex] = Color; } else { //Leds->Colors[LedIndex] = {}; } } else { //Leds->Colors[LedIndex] = {}; } } } internal void TestPatternThree(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { v4 GreenCenter = v4{0, 0, 150, 1}; r32 GreenRadius = Abs(SinR32(Time)) * 200; v4 TealCenter = v4{0, 0, 150, 1}; r32 TealRadius = Abs(SinR32(Time + 1.5)) * 200; r32 FadeDist = 35; for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { v4 LedPosition = Leds->Positions[LedIndex]; u8 Red = 0; u8 Green = 0; u8 Blue = 0; r32 GreenDist = Abs(V4Mag(LedPosition - GreenCenter) - GreenRadius); r32 GreenBrightness = Clamp(0.f, FadeDist - Abs(GreenDist), FadeDist); Green = (u8)(GreenBrightness * 255); r32 TealDist = Abs(V4Mag(LedPosition - TealCenter) - TealRadius); r32 TealBrightness = Clamp(0.f, FadeDist - Abs(TealDist), FadeDist); Red = (u8)(TealBrightness * 255); Blue = (u8)(TealBrightness * 255); Leds->Colors[LedIndex].R = Red; Leds->Colors[LedIndex].B = Green; Leds->Colors[LedIndex].G = Green; } } v4 HSVToRGB (v4 In) { float Hue = In.x; /* while (Hue > 360.0f) { Hue -= 360.0f; } while (Hue < 0.0f) { Hue += 360.0f; } */ Hue = ModR32(Hue, 360.0f); if (Hue < 0) { Hue += 360.0f; } if (Hue == MinR32) { Hue = 0; } if (Hue == MaxR32) { Hue = 360; } Assert(Hue >= 0 && Hue < 360); float Sat = In.y; float Value = In.z; float hh, p, q, t, ff; long i; v4 Result = {}; Result.a = In.a; if(Sat <= 0.0f) { // < is bogus, just shuts up warnings Result.r = Value; Result.g = Value; Result.b = Value; return Result; } hh = Hue; if(hh >= 360.0f) hh = 0.0f; hh /= 60.0f; i = (long)hh; ff = hh - i; p = Value * (1.0f - Sat); q = Value * (1.0f - (Sat * ff)); t = Value * (1.0f - (Sat * (1.0f - ff))); switch(i) { case 0: {Result.r = Value; Result.g = t; Result.b = p; }break; case 1: { Result.r = q; Result.g = Value; Result.b = p; }break; case 2: { Result.r = p; Result.g = Value; Result.b = t; }break; case 3: { Result.r = p; Result.g = q; Result.b = Value; }break; case 4: { Result.r = t; Result.g = p; Result.b = Value; }break; case 5: default: { Result.r = Value; Result.g = p; Result.b = q; }break; } return Result; } internal void Pattern_HueShift(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { r32 Height = SinR32(Time) * 25; r32 CycleLength = 5.0f; r32 CycleProgress = FractR32(Time / CycleLength); r32 CycleBlend = (SinR32(Time) * .5f) + .5f; for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { v4 Pos = Leds->Positions[LedIndex]; r32 Dist = Pos.y - Height; v4 HSV = { (ModR32(Dist, 25) / 25) * 360, 1, 1, 1 }; v4 RGB = HSVToRGB(HSV); u8 R = (u8)(RGB.x * 255); u8 G = (u8)(RGB.y * 255); u8 B = (u8)(RGB.z * 255); Leds->Colors[LedIndex].R = R; Leds->Colors[LedIndex].G = G; Leds->Colors[LedIndex].B = B; } } internal pixel V4ToRGBPixel(v4 C) { pixel Result = {}; Result.R = (u8)(C.x * 255); Result.G = (u8)(C.y * 255); Result.B = (u8)(C.z * 255); return Result; } internal void Pattern_HueFade(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { r32 HueBase = ModR32(Time * 50, 360); r32 CycleLength = 5.0f; r32 CycleProgress = FractR32(Time / CycleLength); r32 CycleBlend = (SinR32(Time) * .5f) + .5f; for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { v4 Pos = Leds->Positions[LedIndex]; r32 Hue = HueBase + Pos.y + Pos.x; v4 HSV = { Hue, 1, 1, 1 }; v4 RGB = HSVToRGB(HSV); Leds->Colors[LedIndex] = V4ToRGBPixel(RGB); } } internal void Pattern_AllGreen(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { u32 I = LedIndex + 1; Leds->Colors[LedIndex] = {}; if (I % 3 == 0) { Leds->Colors[LedIndex].R = 255; } else if (I % 3 == 1) { Leds->Colors[LedIndex].G = 255; } else if (I % 3 == 2) { Leds->Colors[LedIndex].B = 255; } } } internal r32 PatternHash(r32 Seed) { return FractR32(Seed * 17.0 * FractR32(Seed * 0.3183099)); } internal void Pattern_Spots(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { pixel ColorA = { 0, 255, 255 }; pixel ColorB = { 255, 0, 255 }; r32 Speed = .5f; Time *= Speed; r32 ScaleA = 2 * SinR32(Time / 5); r32 ScaleB = 2.4f * CosR32(Time / 2.5f); for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { v4 P = Leds->Positions[LedIndex]; r32 V = P.y; r32 Noise = .3f * PatternHash(V); r32 ThetaY = (Leds->Positions[LedIndex].y / 10) + Time + Noise; r32 ThetaX = (Leds->Positions[LedIndex].x / 13) + Time + Noise; r32 Fade = (ScaleA * SinR32(ThetaY)) + (ScaleB * CosR32(3 * ThetaX)); Fade = RemapClampedR32(Fade, -1, 1, 0, 1); Leds->Colors[LedIndex].R = (u8)LerpR32(Fade, ColorA.R, ColorB.R); Leds->Colors[LedIndex].G = (u8)LerpR32(Fade, ColorA.G, ColorB.G); Leds->Colors[LedIndex].B = (u8)LerpR32(Fade, ColorA.B, ColorB.B); } } internal void Pattern_LighthouseRainbow(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { v2 RefVector = V2Normalize(v2{ SinR32(Time), CosR32(Time) }); for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { v2 Vector = v2{ Leds->Positions[LedIndex].x, Leds->Positions[LedIndex].z }; Vector = V2Normalize(Vector); r32 Angle = V2Dot(RefVector, Vector); #if 0 r32 Fade = RemapR32(Angle, -1, 1, 0, 1); Leds->Colors[LedIndex].R = (u8)(Fade * 255); Leds->Colors[LedIndex].G = (u8)(Fade * 255); Leds->Colors[LedIndex].B = (u8)(Fade * 255); #endif v4 HSV = { (Angle * 30) + (Time * 10) + Leds->Positions[LedIndex].y, 1, 1, 1 }; v4 RGB = HSVToRGB(HSV); Leds->Colors[LedIndex] = V4ToRGBPixel(RGB); } } internal r32 Smoothstep(r32 T) { r32 Result = (T * T * (3 - (2 * T))); return Result; } internal void Pattern_SmoothGrowRainbow(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient) { r32 FillCycleTime = ModR32(Time, 7.0f) / 7.0f; r32 ColorCycleTime = ModR32(Time, 21.0f) / 21.0f; //v4 HSV = { ColorCycleTime * 360, 1, 1, 1 }; //v4 RGB0 = HSVToRGB(HSV); //HSV.x += ; //v4 RGB1 = HSVToRGB(HSV); v4 HSV = { 0, 1, 1, 1 }; for (u32 s = 0; s < Assembly.StripCount; s++) { v2_strip Strip = Assembly.Strips[s]; v4 RGB0 = HSVToRGB(HSV); for (u32 l = 0; l < Strip.LedCount; l++) { u32 LedIndex = Strip.LedLUT[l]; Leds->Colors[LedIndex] = V4ToRGBPixel(RGB0); } HSV.x += 15; } #if 0 for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++) { v4 P = Leds->Positions[LedIndex]; Leds->Colors[LedIndex] = V4ToRGBPixel(RGB0); } #endif } // END TEMPORARY PATTERNS internal void EndCurrentOperationMode(app_state* State) { DeactivateCurrentOperationMode(&State->Modes); } #include "editor/panels/foldhaus_panel_types.h" #include "editor/panels/foldhaus_panel_file_view.h" #include "editor/panels/foldhaus_panel_sculpture_view.h" #include "editor/panels/foldhaus_panel_profiler.h" #include "editor/panels/foldhaus_panel_dmx_view.h" #include "editor/panels/foldhaus_panel_animation_timeline.h" #include "editor/panels/foldhaus_panel_hierarchy.h" #include "editor/panels/foldhaus_panel_types.cpp" //#include "generated/foldhaus_panels_generated.h" #include "editor/foldhaus_interface.cpp" #include "../meta/gs_meta_include.cpp" #include "editor/foldhaus_editor.cpp" #define FOLDHAUS_APP_H #endif // FOLDHAUS_APP_H