Lumenarium/src/app/foldhaus_app.h

500 lines
14 KiB
C
Raw Normal View History

2020-01-02 02:41:43 +00:00
//
// File: foldhaus_app.h
// Author: Peter Slattery
// Creation Date: 2020-01-01
//
#ifndef FOLDHAUS_APP_H
#include "../meta/gs_meta_include.h"
2019-07-19 20:56:21 +00:00
#include "../meta/gs_meta_lexer.h"
#include "engine/foldhaus_serializer.h"
#include "../gs_libs/gs_font.h"
#include "foldhaus_log.h"
2019-07-19 20:56:21 +00:00
#include "interface.h"
#include "engine/foldhaus_network_ordering.h"
2019-07-19 20:56:21 +00:00
#include "engine/assembly/foldhaus_assembly.h"
#include "engine/assembly/foldhaus_assembly_parser.cpp"
2019-07-19 20:56:21 +00:00
#include "engine/sacn/foldhaus_sacn.h"
#include "engine/uart/foldhaus_uart.h"
#include "engine/uart/foldhaus_uart.cpp"
typedef struct app_state app_state;
typedef struct panel panel;
#include "editor/foldhaus_command_dispatch.h"
#include "editor/foldhaus_operation_mode.h"
// TODO(Peter): something we can do later is to remove all reliance on app_state and context
// from foldhaus_pane.h. It should just emit lists of things that the app can iterate over and
// perform operations on, like panel_draw_requests = { bounds, panel* } etc.
#include "editor/foldhaus_panel.h"
#include "engine/animation/foldhaus_animation.h"
#include "engine/animation/foldhaus_animation_serializer.cpp"
#include "engine/animation/foldhaus_animation_renderer.cpp"
2019-07-19 20:56:21 +00:00
struct app_state
{
gs_memory_arena Permanent;
gs_memory_arena* Transient;
2019-07-19 20:56:21 +00:00
// Engine
//
2019-11-23 00:07:25 +00:00
network_protocol NetworkProtocol;
2019-11-03 21:12:25 +00:00
streaming_acn SACN;
led_system LedSystem;
assembly_array Assemblies;
animation_system AnimationSystem;
event_log* GlobalLog;
animation_pattern_array Patterns;
2019-11-03 21:12:25 +00:00
// Interface
//
rect2 WindowBounds;
2019-07-19 20:56:21 +00:00
operation_mode_system Modes;
2019-10-30 14:28:02 +00:00
input_command_queue CommandQueue;
2019-07-19 20:56:21 +00:00
ui_interface Interface;
panel_system PanelSystem;
panel* HotPanel;
2019-07-19 20:56:21 +00:00
};
internal void OpenColorPicker(app_state* State, v4* Address);
#include "engine/assembly/foldhaus_assembly.cpp"
// BEGIN TEMPORARY PATTERNS
internal void
TestPatternOne(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
led_strip_list BlumenStrips = AssemblyStripsGetWithTagValue(Assembly, ConstString("assembly"), ConstString("Blumen Lumen"), Transient);
led_strip_list RadiaStrips = AssemblyStripsGetWithTagValue(Assembly, ConstString("assembly"), ConstString("Radialumia"), Transient);
for (u32 i = 0; i < BlumenStrips.Count; i++)
{
u32 StripIndex = BlumenStrips.StripIndices[i];
v2_strip StripAt = Assembly.Strips[StripIndex];
for (u32 j = 0; j < StripAt.LedCount; j++)
{
u32 LedIndex = StripAt.LedLUT[j];
Leds->Colors[LedIndex] = { 255, 0, 0 };
}
}
for (u32 i = 0; i < RadiaStrips.Count; i++)
{
u32 StripIndex = RadiaStrips.StripIndices[i];
v2_strip StripAt = Assembly.Strips[StripIndex];
for (u32 j = 0; j < StripAt.LedCount; j++)
{
u32 LedIndex = StripAt.LedLUT[j];
Leds->Colors[LedIndex] = { 0, 255, 0 };
}
}
#if 0
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
v4 LedPosition = Leds->Positions[LedIndex];
float PercentX = RemapClampedR32(LedPosition.x, -150.0f, 150.0f, 0.0f, 1.0f);
float PercentY = RemapClampedR32(LedPosition.y, -150.0f, 150.0f, 0.0f, 1.0f);
Leds->Colors[LedIndex].R = (u8)(PercentX * 255);
Leds->Colors[LedIndex].G = (u8)(PercentY * 255);
}
#endif
}
internal void
TestPatternTwo(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
r32 PeriodicTime = (Time / PiR32) * 2;
r32 ZeroOneSin = (SinR32(PeriodicTime) * .5f) + .5f;
r32 ZeroOneCos = (CosR32(PeriodicTime) * .5f) + .5f;
pixel Color = { (u8)(ZeroOneSin * 255), 0, (u8)(ZeroOneCos * 255) };
v4 Center = v4{0, 0, 0, 1};
r32 ThetaZ = Time / 2;
v4 Normal = v4{CosR32(ThetaZ), 0, SinR32(ThetaZ), 0}; // NOTE(Peter): dont' need to normalize. Should always be 1
v4 Right = V4Cross(Normal, v4{0, 1, 0, 0});
v4 FrontCenter = Center + (Normal * 25);
v4 BackCenter = Center - (Normal * 25);
r32 OuterRadiusSquared = 1000000;
r32 InnerRadiusSquared = 0;
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
v4 Position = Leds->Positions[LedIndex];
v4 ToFront = Position + FrontCenter;
v4 ToBack = Position + BackCenter;
r32 ToFrontDotNormal = V4Dot(ToFront, Normal);
r32 ToBackDotNormal = V4Dot(ToBack, Normal);
ToFrontDotNormal = Clamp01(ToFrontDotNormal * 1000);
ToBackDotNormal = Clamp01(ToBackDotNormal * 1000);
r32 SqDistToCenter = V4MagSquared(Position);
if (SqDistToCenter < OuterRadiusSquared && SqDistToCenter > InnerRadiusSquared)
{
if (XOR(ToFrontDotNormal > 0, ToBackDotNormal > 0))
{
Leds->Colors[LedIndex] = Color;
}
else
{
//Leds->Colors[LedIndex] = {};
}
}
else
{
//Leds->Colors[LedIndex] = {};
}
}
}
internal void
TestPatternThree(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
v4 GreenCenter = v4{0, 0, 150, 1};
r32 GreenRadius = Abs(SinR32(Time)) * 200;
v4 TealCenter = v4{0, 0, 150, 1};
r32 TealRadius = Abs(SinR32(Time + 1.5)) * 200;
r32 FadeDist = 35;
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
v4 LedPosition = Leds->Positions[LedIndex];
u8 Red = 0;
u8 Green = 0;
u8 Blue = 0;
r32 GreenDist = Abs(V4Mag(LedPosition - GreenCenter) - GreenRadius);
r32 GreenBrightness = Clamp(0.f, FadeDist - Abs(GreenDist), FadeDist);
Green = (u8)(GreenBrightness * 255);
r32 TealDist = Abs(V4Mag(LedPosition - TealCenter) - TealRadius);
r32 TealBrightness = Clamp(0.f, FadeDist - Abs(TealDist), FadeDist);
Red = (u8)(TealBrightness * 255);
Blue = (u8)(TealBrightness * 255);
Leds->Colors[LedIndex].R = Red;
Leds->Colors[LedIndex].B = Green;
Leds->Colors[LedIndex].G = Green;
}
}
2020-11-15 06:08:13 +00:00
v4 HSVToRGB (v4 In)
{
float Hue = In.x;
/*
while (Hue > 360.0f) { Hue -= 360.0f; }
2020-11-15 06:08:13 +00:00
while (Hue < 0.0f) { Hue += 360.0f; }
*/
Hue = ModR32(Hue, 360.0f);
if (Hue < 0) { Hue += 360.0f; }
if (Hue == MinR32) { Hue = 0; }
if (Hue == MaxR32) { Hue = 360; }
Assert(Hue >= 0 && Hue < 360);
2020-11-15 06:08:13 +00:00
float Sat = In.y;
float Value = In.z;
float hh, p, q, t, ff;
long i;
v4 Result = {};
Result.a = In.a;
if(Sat <= 0.0f) { // < is bogus, just shuts up warnings
Result.r = Value;
Result.g = Value;
Result.b = Value;
return Result;
}
hh = Hue;
if(hh >= 360.0f) hh = 0.0f;
hh /= 60.0f;
i = (long)hh;
ff = hh - i;
p = Value * (1.0f - Sat);
q = Value * (1.0f - (Sat * ff));
t = Value * (1.0f - (Sat * (1.0f - ff)));
switch(i) {
case 0:
{Result.r = Value;
Result.g = t;
Result.b = p;
}break;
case 1:
{
Result.r = q;
Result.g = Value;
Result.b = p;
}break;
case 2:
{
Result.r = p;
Result.g = Value;
Result.b = t;
}break;
case 3:
{
Result.r = p;
Result.g = q;
Result.b = Value;
}break;
case 4:
{
Result.r = t;
Result.g = p;
Result.b = Value;
}break;
case 5:
default:
{
Result.r = Value;
Result.g = p;
Result.b = q;
}break;
}
return Result;
}
internal void
Pattern_HueShift(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
2020-11-15 06:08:13 +00:00
r32 Height = SinR32(Time) * 25;
r32 CycleLength = 5.0f;
r32 CycleProgress = FractR32(Time / CycleLength);
r32 CycleBlend = (SinR32(Time) * .5f) + .5f;
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
v4 Pos = Leds->Positions[LedIndex];
r32 Dist = Pos.y - Height;
v4 HSV = { (ModR32(Dist, 25) / 25) * 360, 1, 1, 1 };
v4 RGB = HSVToRGB(HSV);
u8 R = (u8)(RGB.x * 255);
u8 G = (u8)(RGB.y * 255);
u8 B = (u8)(RGB.z * 255);
Leds->Colors[LedIndex].R = R;
Leds->Colors[LedIndex].G = G;
Leds->Colors[LedIndex].B = B;
}
}
internal pixel
V4ToRGBPixel(v4 C)
{
pixel Result = {};
Result.R = (u8)(C.x * 255);
Result.G = (u8)(C.y * 255);
Result.B = (u8)(C.z * 255);
return Result;
}
internal void
Pattern_HueFade(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
r32 HueBase = ModR32(Time * 50, 360);
r32 CycleLength = 5.0f;
r32 CycleProgress = FractR32(Time / CycleLength);
r32 CycleBlend = (SinR32(Time) * .5f) + .5f;
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
v4 Pos = Leds->Positions[LedIndex];
r32 Hue = HueBase + Pos.y + Pos.x;
v4 HSV = { Hue, 1, 1, 1 };
v4 RGB = HSVToRGB(HSV);
Leds->Colors[LedIndex] = V4ToRGBPixel(RGB);
}
}
internal void
Pattern_AllGreen(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
2020-11-15 06:08:13 +00:00
u32 I = LedIndex + 1;
Leds->Colors[LedIndex] = {};
if (I % 3 == 0)
{
Leds->Colors[LedIndex].R = 255;
}
else if (I % 3 == 1)
{
Leds->Colors[LedIndex].G = 255;
}
else if (I % 3 == 2)
{
Leds->Colors[LedIndex].B = 255;
}
}
}
internal r32
PatternHash(r32 Seed)
{
return FractR32(Seed * 17.0 * FractR32(Seed * 0.3183099));
}
internal void
Pattern_Spots(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
pixel ColorA = { 0, 255, 255 };
pixel ColorB = { 255, 0, 255 };
r32 Speed = .5f;
Time *= Speed;
r32 ScaleA = 2 * SinR32(Time / 5);
r32 ScaleB = 2.4f * CosR32(Time / 2.5f);
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
v4 P = Leds->Positions[LedIndex];
r32 V = P.y;
r32 Noise = .3f * PatternHash(V);
r32 ThetaY = (Leds->Positions[LedIndex].y / 10) + Time + Noise;
r32 ThetaX = (Leds->Positions[LedIndex].x / 13) + Time + Noise;
r32 Fade = (ScaleA * SinR32(ThetaY)) + (ScaleB * CosR32(3 * ThetaX));
Fade = RemapClampedR32(Fade, -1, 1, 0, 1);
Leds->Colors[LedIndex].R = (u8)LerpR32(Fade, ColorA.R, ColorB.R);
Leds->Colors[LedIndex].G = (u8)LerpR32(Fade, ColorA.G, ColorB.G);
Leds->Colors[LedIndex].B = (u8)LerpR32(Fade, ColorA.B, ColorB.B);
}
}
internal void
Pattern_LighthouseRainbow(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
v2 RefVector = V2Normalize(v2{ SinR32(Time), CosR32(Time) });
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
v2 Vector = v2{
Leds->Positions[LedIndex].x,
Leds->Positions[LedIndex].z
};
Vector = V2Normalize(Vector);
r32 Angle = V2Dot(RefVector, Vector);
#if 0
r32 Fade = RemapR32(Angle, -1, 1, 0, 1);
Leds->Colors[LedIndex].R = (u8)(Fade * 255);
Leds->Colors[LedIndex].G = (u8)(Fade * 255);
Leds->Colors[LedIndex].B = (u8)(Fade * 255);
#endif
v4 HSV = { (Angle * 30) + (Time * 10) + Leds->Positions[LedIndex].y, 1, 1, 1 };
v4 RGB = HSVToRGB(HSV);
Leds->Colors[LedIndex] = V4ToRGBPixel(RGB);
}
}
internal r32
Smoothstep(r32 T)
{
r32 Result = (T * T * (3 - (2 * T)));
return Result;
}
internal void
Pattern_SmoothGrowRainbow(led_buffer* Leds, assembly Assembly, r32 Time, gs_memory_arena* Transient)
{
r32 FillCycleTime = ModR32(Time, 7.0f) / 7.0f;
r32 ColorCycleTime = ModR32(Time, 21.0f) / 21.0f;
//v4 HSV = { ColorCycleTime * 360, 1, 1, 1 };
//v4 RGB0 = HSVToRGB(HSV);
//HSV.x += ;
//v4 RGB1 = HSVToRGB(HSV);
v4 HSV = { 0, 1, 1, 1 };
for (u32 s = 0; s < Assembly.StripCount; s++)
{
v2_strip Strip = Assembly.Strips[s];
v4 RGB0 = HSVToRGB(HSV);
for (u32 l = 0; l < Strip.LedCount; l++)
{
u32 LedIndex = Strip.LedLUT[l];
Leds->Colors[LedIndex] = V4ToRGBPixel(RGB0);
}
HSV.x += 15;
}
#if 0
for (u32 LedIndex = 0; LedIndex < Leds->LedCount; LedIndex++)
{
v4 P = Leds->Positions[LedIndex];
Leds->Colors[LedIndex] = V4ToRGBPixel(RGB0);
}
2020-11-15 06:08:13 +00:00
#endif
}
// END TEMPORARY PATTERNS
internal void
EndCurrentOperationMode(app_state* State)
{
DeactivateCurrentOperationMode(&State->Modes);
}
#include "editor/panels/foldhaus_panel_types.h"
#include "editor/panels/foldhaus_panel_file_view.h"
#include "editor/panels/foldhaus_panel_sculpture_view.h"
#include "editor/panels/foldhaus_panel_profiler.h"
#include "editor/panels/foldhaus_panel_dmx_view.h"
#include "editor/panels/foldhaus_panel_animation_timeline.h"
#include "editor/panels/foldhaus_panel_hierarchy.h"
#include "editor/panels/foldhaus_panel_types.cpp"
//#include "generated/foldhaus_panels_generated.h"
#include "editor/foldhaus_interface.cpp"
2020-01-02 02:41:43 +00:00
#include "../meta/gs_meta_include.cpp"
2020-01-02 02:41:43 +00:00
2020-10-25 01:54:47 +00:00
#include "editor/foldhaus_editor.cpp"
2020-01-02 02:41:43 +00:00
#define FOLDHAUS_APP_H
#endif // FOLDHAUS_APP_H