1601 lines
58 KiB
C
1601 lines
58 KiB
C
|
|
// TOP
|
|
|
|
#ifndef FCPP_NEW_LEXER_INC
|
|
#define FCPP_NEW_LEXER_INC
|
|
|
|
#ifndef Assert
|
|
# define Assert(n) do{ if (!(n)) *(int*)0 = 0xA11E; }while(0)
|
|
#endif
|
|
|
|
#ifndef FCPP_LINK
|
|
# define FCPP_LINK static
|
|
#endif
|
|
|
|
#ifndef API_EXPORT
|
|
#define API_EXPORT
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
#if !defined(FSTRING_GUARD)
|
|
# define FSTRING_IMPLEMENTATION
|
|
# include "4coder_string.h"
|
|
#endif
|
|
#include "4cpp_lexer_types.h"
|
|
#include "4cpp_lexer_tables.c"
|
|
|
|
// TODO(allen): revisit this keyword data declaration system
|
|
struct String_And_Flag{
|
|
String str;
|
|
uint32_t flags;
|
|
};
|
|
|
|
static String_And_Flag preprops[] = {
|
|
{make_lit_string("include"), CPP_PP_INCLUDE } ,
|
|
{make_lit_string("INCLUDE"), CPP_PP_INCLUDE } ,
|
|
{make_lit_string("ifndef" ), CPP_PP_IFNDEF } ,
|
|
{make_lit_string("IFNDEF" ), CPP_PP_IFNDEF } ,
|
|
{make_lit_string("define" ), CPP_PP_DEFINE } ,
|
|
{make_lit_string("DEFINE" ), CPP_PP_DEFINE } ,
|
|
{make_lit_string("import" ), CPP_PP_IMPORT } ,
|
|
{make_lit_string("IMPORT" ), CPP_PP_IMPORT } ,
|
|
{make_lit_string("pragma" ), CPP_PP_PRAGMA } ,
|
|
{make_lit_string("PRAGMA" ), CPP_PP_PRAGMA } ,
|
|
{make_lit_string("undef" ), CPP_PP_UNDEF } ,
|
|
{make_lit_string("UNDEF" ), CPP_PP_UNDEF } ,
|
|
{make_lit_string("endif" ), CPP_PP_ENDIF } ,
|
|
{make_lit_string("ENDIF" ), CPP_PP_ENDIF } ,
|
|
{make_lit_string("error" ), CPP_PP_ERROR } ,
|
|
{make_lit_string("ERROR" ), CPP_PP_ERROR } ,
|
|
{make_lit_string("ifdef" ), CPP_PP_IFDEF } ,
|
|
{make_lit_string("IFDEF" ), CPP_PP_IFDEF } ,
|
|
{make_lit_string("using" ), CPP_PP_USING } ,
|
|
{make_lit_string("USING" ), CPP_PP_USING } ,
|
|
{make_lit_string("else" ), CPP_PP_ELSE } ,
|
|
{make_lit_string("ELSE" ), CPP_PP_ELSE } ,
|
|
{make_lit_string("elif" ), CPP_PP_ELIF } ,
|
|
{make_lit_string("ELIF" ), CPP_PP_ELIF } ,
|
|
{make_lit_string("line" ), CPP_PP_LINE } ,
|
|
{make_lit_string("LINE" ), CPP_PP_LINE } ,
|
|
{make_lit_string("if" ), CPP_PP_IF } ,
|
|
{make_lit_string("IF" ), CPP_PP_IF } ,
|
|
};
|
|
|
|
static String_And_Flag keywords[] = {
|
|
{make_lit_string("true") , CPP_TOKEN_BOOLEAN_CONSTANT},
|
|
{make_lit_string("false") , CPP_TOKEN_BOOLEAN_CONSTANT},
|
|
|
|
{make_lit_string("and") , CPP_TOKEN_AND},
|
|
{make_lit_string("and_eq") , CPP_TOKEN_ANDEQ},
|
|
{make_lit_string("bitand") , CPP_TOKEN_BIT_AND},
|
|
{make_lit_string("bitor") , CPP_TOKEN_BIT_OR},
|
|
{make_lit_string("or") , CPP_TOKEN_OR},
|
|
{make_lit_string("or_eq") , CPP_TOKEN_OREQ},
|
|
{make_lit_string("sizeof") , CPP_TOKEN_SIZEOF},
|
|
{make_lit_string("alignof") , CPP_TOKEN_ALIGNOF},
|
|
{make_lit_string("decltype") , CPP_TOKEN_DECLTYPE},
|
|
{make_lit_string("throw") , CPP_TOKEN_THROW},
|
|
{make_lit_string("new") , CPP_TOKEN_NEW},
|
|
{make_lit_string("delete") , CPP_TOKEN_DELETE},
|
|
{make_lit_string("xor") , CPP_TOKEN_BIT_XOR},
|
|
{make_lit_string("xor_eq") , CPP_TOKEN_XOREQ},
|
|
{make_lit_string("not") , CPP_TOKEN_NOT},
|
|
{make_lit_string("not_eq") , CPP_TOKEN_NOTEQ},
|
|
{make_lit_string("typeid") , CPP_TOKEN_TYPEID},
|
|
{make_lit_string("compl") , CPP_TOKEN_BIT_NOT},
|
|
|
|
{make_lit_string("void") , CPP_TOKEN_KEY_TYPE},
|
|
{make_lit_string("bool") , CPP_TOKEN_KEY_TYPE},
|
|
{make_lit_string("char") , CPP_TOKEN_KEY_TYPE},
|
|
{make_lit_string("int") , CPP_TOKEN_KEY_TYPE},
|
|
{make_lit_string("float") , CPP_TOKEN_KEY_TYPE},
|
|
{make_lit_string("double") , CPP_TOKEN_KEY_TYPE},
|
|
|
|
{make_lit_string("long") , CPP_TOKEN_KEY_MODIFIER},
|
|
{make_lit_string("short") , CPP_TOKEN_KEY_MODIFIER},
|
|
{make_lit_string("unsigned") , CPP_TOKEN_KEY_MODIFIER},
|
|
|
|
{make_lit_string("const") , CPP_TOKEN_KEY_QUALIFIER},
|
|
{make_lit_string("volatile") , CPP_TOKEN_KEY_QUALIFIER},
|
|
|
|
{make_lit_string("asm") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("break") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("case") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("catch") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("continue") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("default") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("do") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("else") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("for") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("goto") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("if") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("return") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("switch") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("try") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("while") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
{make_lit_string("static_assert") , CPP_TOKEN_KEY_CONTROL_FLOW},
|
|
|
|
{make_lit_string("const_cast") , CPP_TOKEN_KEY_CAST},
|
|
{make_lit_string("dynamic_cast") , CPP_TOKEN_KEY_CAST},
|
|
{make_lit_string("reinterpret_cast") , CPP_TOKEN_KEY_CAST},
|
|
{make_lit_string("static_cast") , CPP_TOKEN_KEY_CAST},
|
|
|
|
{make_lit_string("class") , CPP_TOKEN_KEY_TYPE_DECLARATION},
|
|
{make_lit_string("enum") , CPP_TOKEN_KEY_TYPE_DECLARATION},
|
|
{make_lit_string("struct") , CPP_TOKEN_KEY_TYPE_DECLARATION},
|
|
{make_lit_string("typedef") , CPP_TOKEN_KEY_TYPE_DECLARATION},
|
|
{make_lit_string("union") , CPP_TOKEN_KEY_TYPE_DECLARATION},
|
|
{make_lit_string("template") , CPP_TOKEN_KEY_TYPE_DECLARATION},
|
|
{make_lit_string("typename") , CPP_TOKEN_KEY_TYPE_DECLARATION},
|
|
|
|
{make_lit_string("friend") , CPP_TOKEN_KEY_ACCESS},
|
|
{make_lit_string("namespace") , CPP_TOKEN_KEY_ACCESS},
|
|
{make_lit_string("private") , CPP_TOKEN_KEY_ACCESS},
|
|
{make_lit_string("protected") , CPP_TOKEN_KEY_ACCESS},
|
|
{make_lit_string("public") , CPP_TOKEN_KEY_ACCESS},
|
|
{make_lit_string("using") , CPP_TOKEN_KEY_ACCESS},
|
|
|
|
{make_lit_string("extern") , CPP_TOKEN_KEY_LINKAGE},
|
|
{make_lit_string("export") , CPP_TOKEN_KEY_LINKAGE},
|
|
{make_lit_string("inline") , CPP_TOKEN_KEY_LINKAGE},
|
|
{make_lit_string("static") , CPP_TOKEN_KEY_LINKAGE},
|
|
{make_lit_string("virtual") , CPP_TOKEN_KEY_LINKAGE},
|
|
|
|
{make_lit_string("alignas") , CPP_TOKEN_KEY_OTHER},
|
|
{make_lit_string("explicit") , CPP_TOKEN_KEY_OTHER},
|
|
{make_lit_string("noexcept") , CPP_TOKEN_KEY_OTHER},
|
|
{make_lit_string("nullptr") , CPP_TOKEN_KEY_OTHER},
|
|
{make_lit_string("operator") , CPP_TOKEN_KEY_OTHER},
|
|
{make_lit_string("register") , CPP_TOKEN_KEY_OTHER},
|
|
{make_lit_string("this") , CPP_TOKEN_KEY_OTHER},
|
|
{make_lit_string("thread_local") , CPP_TOKEN_KEY_OTHER},
|
|
|
|
#if defined(FCPP_LEXER_EXTRA_KEYWORDS)
|
|
FCPP_LEXER_EXTRA_KEYWORDS
|
|
#endif
|
|
};
|
|
|
|
|
|
API_EXPORT FCPP_LINK Cpp_Get_Token_Result
|
|
cpp_get_token(Cpp_Token_Array array, int32_t pos)/*
|
|
DOC_PARAM(array, The array of tokens from which to get a token.)
|
|
DOC_PARAM(pos, The position, measured in bytes, to get the token for.)
|
|
DOC_RETURN(A Cpp_Get_Token_Result struct is returned containing the index
|
|
of a token and a flag indicating whether the pos is contained in the token
|
|
or in whitespace after the token.)
|
|
|
|
DOC(This call performs a binary search over all of the tokens looking
|
|
for the token that contains the specified position. If the position
|
|
is in whitespace between the tokens, the returned token index is the
|
|
index of the token immediately before the provided position. The returned
|
|
index can be -1 if the position is before the first token.)
|
|
|
|
DOC_SEE(Cpp_Get_Token_Result)
|
|
*/{
|
|
Cpp_Get_Token_Result result = {};
|
|
Cpp_Token *token_array = array.tokens;
|
|
Cpp_Token *token = 0;
|
|
int32_t first = 0;
|
|
int32_t count = array.count;
|
|
int32_t last = count;
|
|
int32_t this_start = 0, next_start = 0;
|
|
|
|
if (count > 0){
|
|
for (;;){
|
|
result.token_index = (first + last)/2;
|
|
token = token_array + result.token_index;
|
|
|
|
this_start = token->start;
|
|
|
|
if (result.token_index + 1 < count){
|
|
next_start = (token + 1)->start;
|
|
}
|
|
else{
|
|
next_start = this_start + token->size;
|
|
}
|
|
if (this_start <= pos && pos < next_start){
|
|
break;
|
|
}
|
|
else if (pos < this_start){
|
|
last = result.token_index;
|
|
}
|
|
else{
|
|
first = result.token_index + 1;
|
|
}
|
|
if (first == last){
|
|
result.token_index = first;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (result.token_index == count){
|
|
--result.token_index;
|
|
result.in_whitespace = 1;
|
|
}
|
|
else{
|
|
if (token->start + token->size <= pos){
|
|
result.in_whitespace = 1;
|
|
}
|
|
}
|
|
}
|
|
else{
|
|
result.token_index = -1;
|
|
result.in_whitespace = 1;
|
|
}
|
|
|
|
if (result.token_index >= 0 && result.token_index < count){
|
|
token = array.tokens + result.token_index;
|
|
result.token_start = token->start;
|
|
result.token_end = token->start + token->size;
|
|
}
|
|
|
|
return(result);
|
|
}
|
|
|
|
FCPP_LINK Cpp_Lex_PP_State
|
|
cpp_pp_directive_to_state(Cpp_Token_Type type){
|
|
Cpp_Lex_PP_State result = LSPP_default;
|
|
switch (type){
|
|
case CPP_PP_INCLUDE:
|
|
case CPP_PP_IMPORT:
|
|
case CPP_PP_USING:
|
|
result = LSPP_include;
|
|
break;
|
|
|
|
case CPP_PP_DEFINE:
|
|
result = LSPP_macro_identifier;
|
|
break;
|
|
|
|
case CPP_PP_UNDEF:
|
|
case CPP_PP_IFDEF:
|
|
case CPP_PP_IFNDEF:
|
|
result = LSPP_identifier;
|
|
break;
|
|
|
|
case CPP_PP_IF:
|
|
case CPP_PP_ELIF:
|
|
result = LSPP_body_if;
|
|
break;
|
|
|
|
case CPP_PP_PRAGMA:
|
|
result = LSPP_body;
|
|
break;
|
|
|
|
case CPP_PP_LINE:
|
|
result = LSPP_number;
|
|
break;
|
|
|
|
case CPP_PP_ERROR:
|
|
result = LSPP_error;
|
|
break;
|
|
|
|
case CPP_PP_UNKNOWN:
|
|
case CPP_PP_ELSE:
|
|
case CPP_PP_ENDIF:
|
|
result = LSPP_junk;
|
|
break;
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
// duff-routine defines
|
|
#define DrCase(PC) case PC: goto resumespot_##PC
|
|
|
|
#define DrYield(PC, n)\
|
|
{ token_array_out->count = token_i; *S_ptr = S; S_ptr->__pc__ = PC; return(n); resumespot_##PC:; }
|
|
|
|
#define DrReturn(n) { token_array_out->count = token_i; *S_ptr = S; S_ptr->__pc__ = -1; return(n); }
|
|
|
|
FCPP_LINK Cpp_Lex_Result
|
|
cpp_lex_nonalloc_null_end_no_limit(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size,
|
|
Cpp_Token_Array *token_array_out){
|
|
Cpp_Lex_Data S = *S_ptr;
|
|
|
|
Cpp_Token *out_tokens = token_array_out->tokens;
|
|
int32_t token_i = token_array_out->count;
|
|
int32_t max_token_i = token_array_out->max_count;
|
|
|
|
uint8_t c = 0;
|
|
|
|
int32_t end_pos = size + S.chunk_pos;
|
|
chunk -= S.chunk_pos;
|
|
|
|
switch (S.__pc__){
|
|
DrCase(1);
|
|
DrCase(2);
|
|
DrCase(3);
|
|
DrCase(4);
|
|
DrCase(5);
|
|
DrCase(7);
|
|
}
|
|
|
|
for (;;){
|
|
S.white_done = 0;
|
|
for(;;){
|
|
for (; S.pp_state < LSPP_count && S.pos < end_pos;){
|
|
c = chunk[S.pos++];
|
|
int32_t i = S.pp_state + whitespace_fsm_eq_classes[c];
|
|
S.pp_state = whitespace_fsm_table[i];
|
|
}
|
|
S.white_done = (S.pp_state >= LSPP_count);
|
|
|
|
if (S.white_done == 0){
|
|
S.chunk_pos += size;
|
|
DrYield(4, LexResult_NeedChunk);
|
|
}
|
|
else{
|
|
break;
|
|
}
|
|
}
|
|
--S.pos;
|
|
if (S.pp_state >= LSPP_count){
|
|
S.pp_state -= LSPP_count;
|
|
}
|
|
|
|
S.token.state_flags = S.pp_state;
|
|
|
|
S.token_start = S.pos;
|
|
S.tb_pos = 0;
|
|
S.fsm = null_lex_fsm;
|
|
for(;;){
|
|
{
|
|
uint16_t *eq_classes = get_eq_classes[S.pp_state];
|
|
uint8_t *fsm_table = get_table[S.pp_state];
|
|
|
|
for (; S.fsm.state < LS_count && S.pos < end_pos;){
|
|
c = chunk[S.pos++];
|
|
S.tb[(S.tb_pos++) & (sizeof(S.tb)-1)] = c;
|
|
|
|
int32_t i = S.fsm.state + eq_classes[c];
|
|
S.fsm.state = fsm_table[i];
|
|
S.fsm.multi_line |= multiline_state_table[S.fsm.state];
|
|
}
|
|
S.fsm.emit_token = (S.fsm.state >= LS_count);
|
|
}
|
|
|
|
if (S.fsm.emit_token == 0){
|
|
S.chunk_pos += size;
|
|
DrYield(3, LexResult_NeedChunk);
|
|
}
|
|
else{
|
|
break;
|
|
}
|
|
}
|
|
|
|
Assert(S.fsm.emit_token == 1);
|
|
|
|
if (c == 0){
|
|
S.completed = 1;
|
|
}
|
|
|
|
if (S.fsm.state >= LS_count){
|
|
S.fsm.state -= LS_count;
|
|
}
|
|
|
|
switch (S.fsm.state){
|
|
case LS_default:
|
|
switch (c){
|
|
case 0: S.fsm.emit_token = 0; break;
|
|
|
|
#define OperCase(op,t) case op: S.token.type = t; break;
|
|
OperCase('{', CPP_TOKEN_BRACE_OPEN);
|
|
OperCase('}', CPP_TOKEN_BRACE_CLOSE);
|
|
|
|
OperCase('[', CPP_TOKEN_BRACKET_OPEN);
|
|
OperCase(']', CPP_TOKEN_BRACKET_CLOSE);
|
|
|
|
OperCase('(', CPP_TOKEN_PARENTHESE_OPEN);
|
|
OperCase(')', CPP_TOKEN_PARENTHESE_CLOSE);
|
|
|
|
OperCase('~', CPP_TOKEN_TILDE);
|
|
OperCase(',', CPP_TOKEN_COMMA);
|
|
OperCase(';', CPP_TOKEN_SEMICOLON);
|
|
OperCase('?', CPP_TOKEN_TERNARY_QMARK);
|
|
|
|
OperCase('@', CPP_TOKEN_JUNK);
|
|
#undef OperCase
|
|
|
|
case '\\':
|
|
if (S.pp_state == LSPP_default){
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
}
|
|
else{
|
|
S.pos_overide = S.pos;
|
|
S.white_done = 0;
|
|
for (;;){
|
|
for (; S.white_done == 0 && S.pos < end_pos;){
|
|
c = chunk[S.pos++];
|
|
if (!(c == ' ' || c == '\t' || c == '\r' || c == '\v' || c == '\f')){
|
|
S.white_done = 1;
|
|
}
|
|
}
|
|
|
|
if (S.white_done == 0){
|
|
S.chunk_pos += size;
|
|
DrYield(1, LexResult_NeedChunk);
|
|
}
|
|
else break;
|
|
}
|
|
|
|
if (c == '\n'){
|
|
S.fsm.emit_token = 0;
|
|
S.pos_overide = 0;
|
|
}
|
|
else{
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (c != '@' && c != '\\'){
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
}
|
|
break;
|
|
|
|
case LS_identifier:
|
|
{
|
|
--S.pos;
|
|
|
|
int32_t word_size = S.pos - S.token_start;
|
|
|
|
if (word_size < sizeof(S.tb)){
|
|
if (S.pp_state == LSPP_body_if){
|
|
if (match_ss(make_string(S.tb, word_size), make_lit_string("defined"))){
|
|
S.token.type = CPP_PP_DEFINED;
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR | CPP_TFLAG_IS_KEYWORD;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int32_t sub_match = -1;
|
|
string_set_match_table(keywords, sizeof(*keywords), ArrayCount(keywords),
|
|
make_string(S.tb, S.tb_pos-1), &sub_match);
|
|
|
|
if (sub_match != -1){
|
|
String_And_Flag data = keywords[sub_match];
|
|
S.token.type = (Cpp_Token_Type)data.flags;
|
|
S.token.flags = CPP_TFLAG_IS_KEYWORD;
|
|
break;
|
|
}
|
|
}
|
|
|
|
S.token.type = CPP_TOKEN_IDENTIFIER;
|
|
S.token.flags = 0;
|
|
}break;
|
|
|
|
case LS_pound:
|
|
S.token.flags = 0;
|
|
switch (c){
|
|
case '#': S.token.type = CPP_PP_CONCAT; break;
|
|
default:
|
|
S.token.type = CPP_PP_STRINGIFY;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_pp:
|
|
{
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
S.token.flags = 0;
|
|
--S.pos;
|
|
}break;
|
|
|
|
case LS_ppdef:
|
|
{
|
|
--S.pos;
|
|
|
|
if (S.tb_pos < sizeof(S.tb)){
|
|
int32_t pos = S.tb_pos-1;
|
|
int32_t i = 1;
|
|
for (;i < pos; ++i){
|
|
if (S.tb[i] != ' '){
|
|
break;
|
|
}
|
|
}
|
|
|
|
int32_t sub_match = -1;
|
|
string_set_match_table(preprops, sizeof(*preprops), ArrayCount(preprops),
|
|
make_string(S.tb+i, pos-i), &sub_match);
|
|
|
|
if (sub_match != -1){
|
|
String_And_Flag data = preprops[sub_match];
|
|
S.token.type = (Cpp_Token_Type)data.flags;
|
|
S.token.flags = CPP_TFLAG_PP_DIRECTIVE;
|
|
S.pp_state = (uint8_t)cpp_pp_directive_to_state(S.token.type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
S.token.flags = 0;
|
|
}break;
|
|
|
|
case LS_number:
|
|
case LS_number0:
|
|
case LS_hex:
|
|
S.fsm.int_state = LSINT_default;
|
|
S.fsm.emit_token = 0;
|
|
--S.pos;
|
|
for (;;){
|
|
for (; S.fsm.int_state < LSINT_count && S.pos < end_pos;){
|
|
c = chunk[S.pos++];
|
|
S.fsm.int_state = int_fsm_table[S.fsm.int_state + int_fsm_eq_classes[c]];
|
|
}
|
|
S.fsm.emit_token = (S.fsm.int_state >= LSINT_count);
|
|
|
|
if (S.fsm.emit_token == 0){
|
|
S.chunk_pos += size;
|
|
DrYield(5, LexResult_NeedChunk);
|
|
}
|
|
else break;
|
|
}
|
|
--S.pos;
|
|
|
|
S.token.type = CPP_TOKEN_INTEGER_CONSTANT;
|
|
S.token.flags = 0;
|
|
break;
|
|
|
|
case LS_float:
|
|
case LS_crazy_float0:
|
|
case LS_crazy_float1:
|
|
S.token.type = CPP_TOKEN_FLOATING_CONSTANT;
|
|
S.token.flags = 0;
|
|
switch (c){
|
|
case 'f': case 'F':
|
|
case 'l': case 'L':break;
|
|
default:
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_char:
|
|
case LS_char_slashed:
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
if (c == '\''){
|
|
S.token.type = CPP_TOKEN_CHARACTER_CONSTANT;
|
|
}
|
|
S.token.flags = 0;
|
|
break;
|
|
|
|
case LS_char_multiline:
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
if (c == '\''){
|
|
S.token.type = CPP_TOKEN_CHARACTER_CONSTANT;
|
|
}
|
|
S.token.flags = CPP_TFLAG_MULTILINE;
|
|
break;
|
|
|
|
case LS_string:
|
|
case LS_string_slashed:
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
if (S.pp_state == LSPP_include){
|
|
if (c == '>' || c == '"'){
|
|
S.token.type = CPP_PP_INCLUDE_FILE;
|
|
}
|
|
}
|
|
else{
|
|
if (c == '"'){
|
|
S.token.type = CPP_TOKEN_STRING_CONSTANT;
|
|
}
|
|
}
|
|
S.token.flags = 0;
|
|
break;
|
|
|
|
case LS_string_multiline:
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
if (c == '"'){
|
|
S.token.type = CPP_TOKEN_STRING_CONSTANT;
|
|
}
|
|
S.token.flags = CPP_TFLAG_MULTILINE;
|
|
break;
|
|
|
|
case LS_comment_pre:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_DIVEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_DIV;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_comment:
|
|
case LS_comment_slashed:
|
|
S.token.type = CPP_TOKEN_COMMENT;
|
|
S.token.flags = 0;
|
|
--S.pos;
|
|
break;
|
|
|
|
case LS_comment_block:
|
|
case LS_comment_block_ending:
|
|
S.token.type = CPP_TOKEN_COMMENT;
|
|
S.token.flags = 0;
|
|
break;
|
|
|
|
case LS_error_message:
|
|
S.token.type = CPP_PP_ERROR_MESSAGE;
|
|
S.token.flags = 0;
|
|
--S.pos;
|
|
break;
|
|
|
|
case LS_dot:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '*': S.token.type = CPP_TOKEN_PTRDOT; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_DOT;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_ellipsis:
|
|
switch (c){
|
|
case '.':
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
S.token.type = CPP_TOKEN_ELLIPSIS;
|
|
break;
|
|
|
|
default:
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_less:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_LESSEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_LESS;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_less_less:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_LSHIFTEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_LSHIFT;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_more:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_GRTREQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_GRTR;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_more_more:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_RSHIFTEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_RSHIFT;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_minus:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '-': S.token.type = CPP_TOKEN_DECREMENT; break;
|
|
case '=': S.token.type = CPP_TOKEN_SUBEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_MINUS;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_arrow:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '*': S.token.type = CPP_TOKEN_PTRARROW; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_ARROW;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_and:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '&': S.token.type = CPP_TOKEN_AND; break;
|
|
case '=': S.token.type = CPP_TOKEN_ANDEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_AMPERSAND;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_or:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '|': S.token.type = CPP_TOKEN_OR; break;
|
|
case '=': S.token.type = CPP_TOKEN_OREQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_BIT_OR;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_plus:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '+': S.token.type = CPP_TOKEN_INCREMENT; break;
|
|
case '=': S.token.type = CPP_TOKEN_ADDEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_PLUS;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_colon:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case ':': S.token.type = CPP_TOKEN_SCOPE; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_COLON;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_star:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_MULEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_STAR;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_modulo:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_MODEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_MOD;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_caret:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_XOREQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_BIT_XOR;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_eq:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_EQEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_EQ;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case LS_bang:
|
|
S.token.flags = CPP_TFLAG_IS_OPERATOR;
|
|
switch (c){
|
|
case '=': S.token.type = CPP_TOKEN_NOTEQ; break;
|
|
default:
|
|
S.token.type = CPP_TOKEN_NOT;
|
|
--S.pos;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (S.pos > S.chunk_pos && chunk[S.pos-1] == 0){
|
|
--S.pos;
|
|
}
|
|
|
|
if ((S.token.flags & CPP_TFLAG_PP_DIRECTIVE) == 0){
|
|
switch (S.pp_state){
|
|
case LSPP_macro_identifier:
|
|
if (S.fsm.state != LS_identifier){
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
S.pp_state = LSPP_junk;
|
|
}
|
|
else{
|
|
S.pp_state = LSPP_body;
|
|
}
|
|
break;
|
|
|
|
case LSPP_identifier:
|
|
if (S.fsm.state != LS_identifier){
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
}
|
|
S.pp_state = LSPP_junk;
|
|
break;
|
|
|
|
case LSPP_number:
|
|
if (S.token.type != CPP_TOKEN_INTEGER_CONSTANT){
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
S.pp_state = LSPP_junk;
|
|
}
|
|
else{
|
|
S.pp_state = LSPP_include;
|
|
}
|
|
break;
|
|
|
|
case LSPP_junk:
|
|
if (S.token.type != CPP_TOKEN_COMMENT){
|
|
S.token.type = CPP_TOKEN_JUNK;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
if (S.fsm.emit_token){
|
|
S.token.start = S.token_start;
|
|
if (S.pos_overide){
|
|
S.token.size = S.pos_overide - S.token_start;
|
|
S.pos_overide = 0;
|
|
}
|
|
else{
|
|
S.token.size = S.pos - S.token_start;
|
|
}
|
|
if ((S.token.flags & CPP_TFLAG_PP_DIRECTIVE) == 0){
|
|
S.token.flags |= (S.pp_state != LSPP_default)?(CPP_TFLAG_PP_BODY):(0);
|
|
}
|
|
|
|
out_tokens[token_i++] = S.token;
|
|
if (token_i == max_token_i){
|
|
if (S.pos == end_pos){
|
|
S.chunk_pos += size;
|
|
DrYield(7, LexResult_NeedChunk);
|
|
}
|
|
DrYield(2, LexResult_NeedTokenMemory);
|
|
}
|
|
}
|
|
|
|
if (S.completed){
|
|
break;
|
|
}
|
|
}
|
|
|
|
DrReturn(LexResult_Finished);
|
|
}
|
|
|
|
#undef DrYield
|
|
#undef DrReturn
|
|
#undef DrCase
|
|
|
|
FCPP_LINK Cpp_Lex_Result
|
|
cpp_lex_nonalloc_null_end_out_limit(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size,
|
|
Cpp_Token_Array *token_array_out, int32_t max_tokens_out){
|
|
Cpp_Token_Array temp_array = *token_array_out;
|
|
if (temp_array.max_count > temp_array.count + max_tokens_out){
|
|
temp_array.max_count = temp_array.count + max_tokens_out;
|
|
}
|
|
|
|
Cpp_Lex_Result result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, &temp_array);
|
|
|
|
token_array_out->count = temp_array.count;
|
|
if (result == LexResult_NeedTokenMemory){
|
|
if (token_array_out->count < token_array_out->max_count){
|
|
result = LexResult_HitTokenLimit;
|
|
}
|
|
}
|
|
|
|
return(result);
|
|
}
|
|
|
|
FCPP_LINK Cpp_Lex_Result
|
|
cpp_lex_nonalloc_no_null_no_limit(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size, int32_t full_size,
|
|
Cpp_Token_Array *token_array_out){
|
|
Cpp_Lex_Result result = 0;
|
|
if (S_ptr->pos >= full_size){
|
|
char end_null = 0;
|
|
result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, &end_null, 1, token_array_out);
|
|
}
|
|
else{
|
|
result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, token_array_out);
|
|
if (result == LexResult_NeedChunk){
|
|
if (S_ptr->pos >= full_size){
|
|
char end_null = 0;
|
|
result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, &end_null, 1, token_array_out);
|
|
}
|
|
}
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
FCPP_LINK Cpp_Lex_Result
|
|
cpp_lex_nonalloc_no_null_out_limit(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size, int32_t full_size,
|
|
Cpp_Token_Array *token_array_out, int32_t max_tokens_out){
|
|
Cpp_Token_Array temp_stack = *token_array_out;
|
|
if (temp_stack.max_count > temp_stack.count + max_tokens_out){
|
|
temp_stack.max_count = temp_stack.count + max_tokens_out;
|
|
}
|
|
|
|
Cpp_Lex_Result result = cpp_lex_nonalloc_no_null_no_limit(S_ptr, chunk, size, full_size,
|
|
&temp_stack);
|
|
|
|
token_array_out->count = temp_stack.count;
|
|
|
|
if (result == LexResult_NeedTokenMemory){
|
|
if (token_array_out->count < token_array_out->max_count){
|
|
result = LexResult_HitTokenLimit;
|
|
}
|
|
}
|
|
|
|
return(result);
|
|
}
|
|
|
|
#define HAS_NULL_TERM ((int32_t)(-1))
|
|
#define NO_OUT_LIMIT ((int32_t)(-1))
|
|
|
|
API_EXPORT FCPP_LINK Cpp_Lex_Result
|
|
cpp_lex_step(Cpp_Lex_Data *S_ptr, char *chunk, int32_t size, int32_t full_size, Cpp_Token_Array *token_array_out, int32_t max_tokens_out)/*
|
|
DOC_PARAM(S_ptr, The lexer state. Go to the Cpp_Lex_Data section to see how to initialize the state.)
|
|
DOC_PARAM(chunk, The first or next chunk of the file being lexed.)
|
|
DOC_PARAM(size, The number of bytes in the chunk including the null terminator if the chunk ends in a null terminator. If the chunk ends in a null terminator the system will interpret it as the end of the file.)
|
|
DOC_PARAM(full_size, If the final chunk is not null terminated this parameter should specify the length of the file in bytes. To rely on an eventual null terminator use HAS_NULL_TERM for this parameter.)
|
|
DOC_PARAM(token_array_out, The token array structure that will receive the tokens output by the lexer.)
|
|
DOC_PARAM(max_tokens_out, The maximum number of tokens to be output to the token array. To rely on the
|
|
max built into the token array pass NO_OUT_LIMIT here.)
|
|
DOC(This call is the primary interface of the lexing system. It is quite general so it can be used in a lot of different ways. I will explain the general rules first, and then give some examples of common ways it might be used.
|
|
|
|
First a lexing state, Cpp_Lex_Data, must be initialized. The file to lex must be read into N contiguous chunks
|
|
of memory. An output Cpp_Token_Array must be allocated and initialized with the appropriate count and max_count
|
|
values. Then each chunk of the file must be passed to cpp_lex_step in order using the same lexing state for each call.
|
|
Every time a call to cpp_lex_step returns LexResult_NeedChunk, the next call to cpp_lex_step should use the
|
|
next chunk. If the return is some other value, the lexer hasn't finished with the current chunk and it sopped for some
|
|
other reason, so the same chunk should be used again in the next call.
|
|
|
|
If the file chunks contain a null terminator the lexer will return LexResult_Finished when it finds this character.
|
|
At this point calling the lexer again with the same state will result in an error. If you do not have a null
|
|
terminated chunk to end the file, you may instead pass the exact size in bytes of the entire file to the full_size
|
|
parameter and it will automatically handle the termination of the lexing state when it has read that many bytes.
|
|
If a full_size is specified and the system terminates for having seen that many bytes, it will return
|
|
LexResult_Finished. If a full_size is specified and a null character is read before the total number of bytes have
|
|
been read the system will still terminate as usual and return LexResult_Finished.
|
|
|
|
If the system has filled the entire output array it will return LexResult_NeedTokenMemory. When this happens if you
|
|
want to continue lexing the file you can grow the token array, or switch to a new output array and then call
|
|
cpp_lex_step again with the chunk that was being lexed and the new output. You can also specify a max_tokens_out
|
|
which is limits how many new tokens will be added to the token array. Even if token_array_out still had more space
|
|
to hold tokens, if the max_tokens_out limit is hit, the lexer will stop and return LexResult_HitTokenLimit. If this
|
|
happens there is still space left in the token array, so you can resume simply by calling cpp_lex_step again with
|
|
the same chunk and the same output array. Also note that, unlike the chunks which must only be replaced when the
|
|
system says it needs a chunk. You may switch to or modify the output array in between calls as much as you like.
|
|
|
|
The most basic use of this system is to get it all done in one big chunk and try to allocate a nearly "infinite" output
|
|
array so that it will not run out of memory. This way you can get the entire job done in one call and then just assert
|
|
to make sure it returns LexResult_Finished to you:
|
|
|
|
CODE_EXAMPLE(
|
|
Cpp_Token_Array lex_file(char *file_name){
|
|
File_Data file = read_whole_file(file_name);
|
|
|
|
char *temp = (char*)malloc(4096); // hopefully big enough
|
|
Cpp_Lex_Data lex_state = cpp_lex_data_init(temp);
|
|
|
|
Cpp_Token_Array array = {0};
|
|
array.tokens = (Cpp_Token*)malloc(1 << 20); // hopefully big enough
|
|
array.max_count = (1 << 20)/sizeof(Cpp_Token);
|
|
|
|
Cpp_Lex_Result result =
|
|
cpp_lex_step(&lex_state, file.data, file.size, file.size,
|
|
&array, NO_OUT_LIMIT);
|
|
Assert(result == LexResult_Finished);
|
|
|
|
free(temp);
|
|
|
|
return(array);
|
|
})
|
|
|
|
)
|
|
|
|
DOC_SEE(Cpp_Lex_Data)
|
|
DOC_SEE(Cpp_Lex_Result)
|
|
*/{
|
|
Cpp_Lex_Result result = 0;
|
|
if (full_size == HAS_NULL_TERM){
|
|
if (max_tokens_out == NO_OUT_LIMIT){
|
|
result = cpp_lex_nonalloc_null_end_no_limit(S_ptr, chunk, size, token_array_out);
|
|
}
|
|
else{
|
|
result = cpp_lex_nonalloc_null_end_out_limit(S_ptr, chunk, size, token_array_out, max_tokens_out);
|
|
}
|
|
}
|
|
else{
|
|
if (max_tokens_out == NO_OUT_LIMIT){
|
|
result = cpp_lex_nonalloc_no_null_no_limit(S_ptr, chunk, size, full_size, token_array_out);
|
|
}
|
|
else{
|
|
result = cpp_lex_nonalloc_no_null_out_limit(S_ptr, chunk, size, full_size, token_array_out, max_tokens_out);
|
|
}
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK Cpp_Lex_Data
|
|
cpp_lex_data_init()/*
|
|
DOC_RETURN(A brand new lex state ready to begin lexing a file from the beginning.)
|
|
|
|
DOC(Creates a new lex state in the form of a Cpp_Lex_Data struct and returns the struct.
|
|
The system needs a temporary buffer that is as long as the longest token. 4096 is usually
|
|
enough but the buffer is not checked, so to be 100% bullet proof it has to be the same length
|
|
as the file being lexed.)
|
|
*/{
|
|
Cpp_Lex_Data data = {0};
|
|
return(data);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK int32_t
|
|
cpp_lex_data_temp_size(Cpp_Lex_Data *lex_data)/*
|
|
DOC_PARAM(lex_data, The lex state from which to get the temporary buffer size.)
|
|
DOC(This call gets the current size of the temporary buffer in the lexer state so
|
|
that you can move to a new temporary buffer by copying the data over.)
|
|
DOC_SEE(cpp_lex_data_temp_read)
|
|
DOC_SEE(cpp_lex_data_new_temp)
|
|
*/{
|
|
int32_t result = lex_data->tb_pos;
|
|
Assert(lex_data->tb != 0);
|
|
return(result);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK void
|
|
cpp_lex_data_temp_read(Cpp_Lex_Data *lex_data, char *out_buffer)/*
|
|
DOC_PARAM(lex_data, The lex state from which to read the temporary buffer.)
|
|
DOC_PARAM(out_buffer, The buffer into which the contents of the temporary buffer will be written.
|
|
The size of the buffer must be at least the size as returned by cpp_lex_data_temp_size.)
|
|
DOC(This call reads the current contents of the temporary buffer.)
|
|
DOC_SEE(cpp_lex_data_temp_size)
|
|
DOC_SEE(cpp_lex_data_new_temp)
|
|
*/{
|
|
int32_t size = lex_data->tb_pos;
|
|
char *src = lex_data->tb;
|
|
char *end = src + size;
|
|
for (; src < end; ++src, ++out_buffer){
|
|
*out_buffer = *src;
|
|
}
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK void
|
|
cpp_lex_data_new_temp_DEP(Cpp_Lex_Data *lex_data, char *new_buffer)
|
|
/*DOC(Deprecated in 4cpp Lexer 1.0.1*/{}
|
|
|
|
FCPP_LINK char
|
|
cpp_token_get_pp_state(uint16_t bitfield){
|
|
return (char)(bitfield);
|
|
}
|
|
|
|
FCPP_LINK void
|
|
cpp_shift_token_starts(Cpp_Token_Array *array, int32_t from_token_i, int32_t shift_amount){
|
|
Cpp_Token *token = array->tokens + from_token_i;
|
|
int32_t count = array->count, i = 0;
|
|
for (i = from_token_i; i < count; ++i, ++token){
|
|
token->start += shift_amount;
|
|
}
|
|
}
|
|
|
|
FCPP_LINK Cpp_Token
|
|
cpp_index_array(Cpp_Token_Array *array, int32_t file_size, int32_t index){
|
|
Cpp_Token result;
|
|
if (index < array->count){
|
|
result = array->tokens[index];
|
|
}
|
|
else{
|
|
result.start = file_size;
|
|
result.size = 0;
|
|
result.type = CPP_TOKEN_EOF;
|
|
result.flags = 0;
|
|
result.state_flags = 0;
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK Cpp_Relex_Range
|
|
cpp_get_relex_range(Cpp_Token_Array *array, int32_t start_pos, int32_t end_pos)
|
|
/*
|
|
DOC_PARAM(array, A pointer to the token array that will be modified by the relex,
|
|
this array should already contain the tokens for the previous state of the file.)
|
|
DOC_PARAM(start_pos, The start position of the edited region of the file.
|
|
The start and end points are based on the edited region of the file before the edit.)
|
|
DOC_PARAM(end_pos, The end position of the edited region of the file.
|
|
In particular, end_pos is the first character after the edited region not effected by the edit.
|
|
Thus if the edited region contained one character end_pos - start_pos should equal 1.
|
|
The start and end points are based on the edited region of the file before the edit.)
|
|
*/{
|
|
Cpp_Relex_Range range = {0};
|
|
Cpp_Get_Token_Result get_result = {0};
|
|
|
|
get_result = cpp_get_token(*array, start_pos);
|
|
range.start_token_index = get_result.token_index-1;
|
|
if (range.start_token_index < 0){
|
|
range.start_token_index = 0;
|
|
}
|
|
|
|
get_result = cpp_get_token(*array, end_pos);
|
|
range.end_token_index = get_result.token_index;
|
|
if (end_pos > array->tokens[range.end_token_index].start){
|
|
++range.end_token_index;
|
|
}
|
|
if (range.end_token_index < 0){
|
|
range.end_token_index = 0;
|
|
}
|
|
|
|
return(range);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK Cpp_Relex_Data
|
|
cpp_relex_init(Cpp_Token_Array *array, int32_t start_pos, int32_t end_pos, int32_t character_shift_amount)
|
|
/*
|
|
DOC_PARAM(array, A pointer to the token array that will be modified by the relex,
|
|
this array should already contain the tokens for the previous state of the file.)
|
|
DOC_PARAM(start_pos, The start position of the edited region of the file.
|
|
The start and end points are based on the edited region of the file before the edit.)
|
|
DOC_PARAM(end_pos, The end position of the edited region of the file.
|
|
In particular, end_pos is the first character after the edited region not effected by the edit.
|
|
Thus if the edited region contained one character end_pos - start_pos should equal 1.
|
|
The start and end points are based on the edited region of the file before the edit.)
|
|
DOC_PARAM(character_shift_amount, The shift in the characters after the edited region.)
|
|
DOC_RETURN(Returns a partially initialized relex state.)
|
|
|
|
DOC(This call does the first setup step of initializing a relex state. To finish initializing the relex state
|
|
you must tell the state about the positioning of the first chunk it will be fed. There are two methods of doing
|
|
this, the direct method is with cpp_relex_declare_first_chunk_position, the method that is often more convenient
|
|
is with cpp_relex_is_start_chunk. If the file is not chunked the second step of initialization can be skipped.)
|
|
|
|
DOC_SEE(cpp_relex_declare_first_chunk_position)
|
|
DOC_SEE(cpp_relex_is_start_chunk)
|
|
|
|
*/{
|
|
Cpp_Relex_Data state = {0};
|
|
|
|
Cpp_Relex_Range range = cpp_get_relex_range(array, start_pos, end_pos);
|
|
state.start_token_index = range.start_token_index;
|
|
state.end_token_index = range.end_token_index;
|
|
state.original_end_token_index = range.end_token_index;
|
|
|
|
state.relex_start_position = array->tokens[state.start_token_index].start;
|
|
if (start_pos < state.relex_start_position){
|
|
state.relex_start_position = start_pos;
|
|
}
|
|
|
|
state.character_shift_amount = character_shift_amount;
|
|
|
|
state.lex = cpp_lex_data_init();
|
|
state.lex.pp_state = cpp_token_get_pp_state(array->tokens[state.start_token_index].state_flags);
|
|
state.lex.pos = state.relex_start_position;
|
|
|
|
return(state);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK int32_t
|
|
cpp_relex_start_position(Cpp_Relex_Data *S_ptr)
|
|
/*
|
|
DOC_PARAM(S_ptr, A pointer to a state that is done with the first stage of initialization (cpp_relex_init))
|
|
DOC_RETURN(Returns the first position in the file the relexer wants to read. This is usually a position slightly
|
|
earlier than the start_pos provided as the edit range.)
|
|
|
|
DOC(After doing the first stage of initialization this call is useful for figuring out what chunk
|
|
of the file to feed to the lexer first. It should be a chunk that contains the position returned
|
|
by this call.)
|
|
|
|
DOC_SEE(cpp_relex_init)
|
|
DOC_SEE(cpp_relex_declare_first_chunk_position)
|
|
|
|
*/{
|
|
int32_t result = S_ptr->relex_start_position;
|
|
return(result);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK void
|
|
cpp_relex_declare_first_chunk_position(Cpp_Relex_Data *S_ptr, int32_t position)
|
|
/*
|
|
DOC_PARAM(S_ptr, A pointer to a state that is done with the first stage of initialization (cpp_relex_init))
|
|
DOC_PARAM(position, The start position of the first chunk that will be fed to the relex process.)
|
|
|
|
DOC(To initialize the relex system completely, the system needs to know how the characters in the
|
|
first file line up with the file's absolute layout. This call declares where the first chunk's start
|
|
position is in the absolute file layout, and the system infers the alignment from that. For this method
|
|
to work the starting position of the relexing needs to be inside the first chunk. To get the relexers
|
|
starting position call cpp_relex_start_position.)
|
|
|
|
DOC_SEE(cpp_relex_init)
|
|
DOC_SEE(cpp_relex_start_position)
|
|
|
|
*/{
|
|
S_ptr->lex.chunk_pos = position;
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK int32_t
|
|
cpp_relex_is_start_chunk(Cpp_Relex_Data *S_ptr, char *chunk, int32_t chunk_size)
|
|
/*
|
|
DOC_PARAM(S_ptr, A pointer to a state that is done with the first stage of initialization (cpp_relex_init))
|
|
DOC_PARAM(chunk, The chunk to check.)
|
|
DOC_PARAM(chunk_size, The size of the chunk to check.)
|
|
|
|
DOC_RETURN(Returns non-zero if the passed in chunk should be used as the first chunk for lexing.)
|
|
|
|
DOC(With this method, once a state is initialized, each chunk can be fed in one after the other in
|
|
the order they appear in the absolute file layout. When this call returns non-zero it means that
|
|
the chunk that was passed in on that call should be used in the first call to cpp_relex_step. If,
|
|
after trying all of the chunks, they all return zero, pass in NULL for chunk and 0 for chunk_size
|
|
to tell the system that all possible chunks have already been tried, and then use those values again
|
|
in the one and only call to cpp_relex_step.)
|
|
|
|
DOC_SEE(cpp_relex_init)
|
|
*/{
|
|
int32_t pos = S_ptr->relex_start_position;
|
|
int32_t start = S_ptr->lex.chunk_pos;
|
|
int32_t end = start + chunk_size;
|
|
|
|
int32_t good_chunk = 0;
|
|
if (start <= pos && pos < end){
|
|
good_chunk = 1;
|
|
}
|
|
else{
|
|
if (chunk == 0){
|
|
good_chunk = 1;
|
|
S_ptr->lex.chunk_pos = pos;
|
|
}
|
|
else{
|
|
S_ptr->lex.chunk_pos += chunk_size;
|
|
}
|
|
}
|
|
|
|
return(good_chunk);
|
|
}
|
|
|
|
// duff-routine defines
|
|
#define DrCase(PC) case PC: goto resumespot_##PC
|
|
|
|
#define DrYield(PC, n) { \
|
|
S_ptr->result_state = n; \
|
|
*S_ptr = S; S_ptr->__pc__ = PC; return(n); resumespot_##PC:; }
|
|
|
|
#define DrReturn(n) { \
|
|
S_ptr->result_state = n; \
|
|
*S_ptr = S; S_ptr->__pc__ = -1; return(n); }
|
|
|
|
API_EXPORT FCPP_LINK Cpp_Lex_Result
|
|
cpp_relex_step(Cpp_Relex_Data *S_ptr, char *chunk, int32_t chunk_size, int32_t full_size,
|
|
Cpp_Token_Array *array, Cpp_Token_Array *relex_array)
|
|
/*
|
|
DOC_PARAM(S_ptr, A pointer to a fully initiazed relex state.)
|
|
DOC_PARAM(chunk, A chunk of the edited file being relexed.)
|
|
DOC_PARAM(chunk_size, The size of the current chunk.)
|
|
DOC_PARAM(full_size, The full size of the edited file.)
|
|
DOC_PARAM(array, A pointer to a token array that contained the original tokens before the edit.)
|
|
DOC_PARAM(relex_array, A pointer to a token array for spare space. The capacity of the
|
|
relex_array determines how far the relex process can go. If it runs out, the process
|
|
can be continued if the same relex_array is extended without losing the tokens it contains.
|
|
|
|
To get an appropriate capacity for relex_array, you can get the range of tokens that the relex
|
|
operation is likely to traverse by looking at the result from cpp_get_relex_range.)
|
|
|
|
DOC(When a file has already been lexed, and then it is edited in a small local way,
|
|
rather than lexing the new file all over again, cpp_relex_step can try to find just
|
|
the range of tokens that need to be updated and fix them in.
|
|
|
|
First the lex state must be initialized (cpp_relex_init). Then one or more calls to
|
|
cpp_relex_step will start editing the array and filling out the relex_array. The return
|
|
value of cpp_relex_step indicates whether the relex was successful or was interrupted
|
|
and if it was interrupted, what the system needs to resume.
|
|
|
|
LexResult_Finished indicates that the relex engine finished successfully.
|
|
|
|
LexResult_NeedChunk indicates that the system needs the next chunk of the file.
|
|
|
|
LexResult_NeedTokenMemory indicates that the relex_array has reached capacity, and that
|
|
it needs to be extended if it is going to continue. Sometimes in this case it is better
|
|
to stop and just lex the entire file normally, because there are a few cases where a small
|
|
local change effects a long range of the lexers output.
|
|
|
|
The relex operation can be closed in one of two ways. If the LexResult_Finished
|
|
value has been returned by this call, then to complete the edits to the array make
|
|
sure the original array has enough capacity to store the final result by calling
|
|
cpp_relex_get_new_count. Then the operation can be finished successfully by calling
|
|
cpp_relex_complete.
|
|
|
|
Whether or not the relex process finished with LexResult_Finished the process can be
|
|
finished by calling cpp_relex_abort, which puts the array back into it's original state.
|
|
No close is necessary if getting the original array state back is not necessary.)
|
|
|
|
DOC_SEE(cpp_relex_init)
|
|
DOC_SEE(cpp_get_relex_range)
|
|
DOC_SEE(Cpp_Lex_Result)
|
|
DOC_SEE(cpp_relex_get_new_count)
|
|
DOC_SEE(cpp_relex_complete)
|
|
DOC_SEE(cpp_relex_abort)
|
|
*/{
|
|
|
|
Cpp_Relex_Data S = *S_ptr;
|
|
Cpp_Lex_Result step_result = LexResult_Finished;
|
|
|
|
switch (S.__pc__){
|
|
DrCase(1);
|
|
DrCase(2);
|
|
}
|
|
|
|
cpp_shift_token_starts(array, S.end_token_index, S.character_shift_amount);
|
|
S.end_token = cpp_index_array(array, full_size, S.end_token_index);
|
|
|
|
// TODO(allen): This can be better I suspect.
|
|
for (;;){
|
|
step_result =
|
|
cpp_lex_nonalloc_no_null_out_limit(&S.lex, chunk, chunk_size, full_size,
|
|
relex_array, 1);
|
|
|
|
switch (step_result){
|
|
case LexResult_HitTokenLimit:
|
|
{
|
|
Cpp_Token token = relex_array->tokens[relex_array->count-1];
|
|
if (token.type == S.end_token.type &&
|
|
token.start == S.end_token.start &&
|
|
token.size == S.end_token.size &&
|
|
token.flags == S.end_token.flags &&
|
|
token.state_flags == S.end_token.state_flags){
|
|
--relex_array->count;
|
|
goto double_break;
|
|
}
|
|
|
|
while (S.lex.pos > S.end_token.start && S.end_token_index < array->count){
|
|
++S.end_token_index;
|
|
S.end_token = cpp_index_array(array, full_size, S.end_token_index);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case LexResult_NeedChunk: DrYield(1, LexResult_NeedChunk); break;
|
|
|
|
case LexResult_NeedTokenMemory: DrYield(2, LexResult_NeedTokenMemory); break;
|
|
|
|
case LexResult_Finished: goto double_break;
|
|
}
|
|
}
|
|
|
|
double_break:;
|
|
DrReturn(LexResult_Finished);
|
|
}
|
|
|
|
#undef DrYield
|
|
#undef DrReturn
|
|
#undef DrCase
|
|
|
|
API_EXPORT FCPP_LINK int32_t
|
|
cpp_relex_get_new_count(Cpp_Relex_Data *S_ptr, int32_t current_count, Cpp_Token_Array *relex_array)
|
|
/*
|
|
DOC_PARAM(S_ptr, A pointer to a state that has gone through cpp_relex_step with a LexResult_Finished return.)
|
|
DOC_PARAM(current_count, The count of tokens in the original array before the edit.)
|
|
DOC_PARAM(relex_array, The relex_array that was used in the cpp_relex_step call/calls.)
|
|
|
|
DOC(After getting a LexResult_Finished from cpp_relex_step, this call can be used to get
|
|
the size the new array will have. If the original array doesn't have enough capacity to store
|
|
the new array, it's capacity should be increased before passing to cpp_relex_complete.)
|
|
*/{
|
|
int32_t result = -1;
|
|
|
|
if (S_ptr->result_state == LexResult_Finished){
|
|
int32_t delete_amount = S_ptr->end_token_index - S_ptr->start_token_index;
|
|
int32_t shift_amount = relex_array->count - delete_amount;
|
|
result = current_count + shift_amount;
|
|
}
|
|
|
|
return(result);
|
|
}
|
|
|
|
#if !defined(FCPP_FORBID_MEMCPY)
|
|
#include <string.h>
|
|
#endif
|
|
|
|
FCPP_LINK void
|
|
cpp__block_move(void *dst, void *src, int32_t size){
|
|
#if !defined(FCPP_FORBID_MEMCPY)
|
|
memmove(dst, src, size);
|
|
#else
|
|
// TODO(allen): find a way to write a fast one of these.
|
|
uint8_t *d = (uint8_t*)dst, *s = (uint8_t*)src;
|
|
if (d < s || d >= s + size){
|
|
for (; size > 0; --size){
|
|
*(d++) = *(s++);
|
|
}
|
|
}
|
|
else{
|
|
d += size - 1;
|
|
s += size - 1;
|
|
for (; size > 0; --size){
|
|
*(d--) = *(s--);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK void
|
|
cpp_relex_complete(Cpp_Relex_Data *S_ptr, Cpp_Token_Array *array, Cpp_Token_Array *relex_array)
|
|
/*
|
|
DOC_PARAM(S_ptr, A pointer to a state that has gone through cpp_relex_step with a LexResult_Finished return.)
|
|
DOC_PARAM(array, The original array being edited by cpp_relex_step calls.)
|
|
DOC_PARAM(relex_array, The relex_array that was filled by cpp_relex_step.)
|
|
|
|
DOC(After getting a LexResult_Finished from cpp_relex_step, and ensuring that
|
|
array has a large enough capacity by calling cpp_relex_get_new_count, this call
|
|
does the necessary replacement of tokens in the array to make it match the new file.)
|
|
*/{
|
|
int32_t delete_amount = S_ptr->end_token_index - S_ptr->start_token_index;
|
|
int32_t shift_amount = relex_array->count - delete_amount;
|
|
|
|
if (shift_amount != 0){
|
|
int32_t shift_size = array->count - S_ptr->end_token_index;
|
|
if (shift_size > 0){
|
|
Cpp_Token *old_base = array->tokens + S_ptr->end_token_index;
|
|
cpp__block_move(old_base + shift_amount, old_base, sizeof(Cpp_Token)*shift_size);
|
|
}
|
|
array->count += shift_amount;
|
|
}
|
|
|
|
cpp__block_move(array->tokens + S_ptr->start_token_index, relex_array->tokens,
|
|
sizeof(Cpp_Token)*relex_array->count);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK void
|
|
cpp_relex_abort(Cpp_Relex_Data *S_ptr, Cpp_Token_Array *array)
|
|
/*
|
|
DOC_PARAM(S_ptr, A pointer to a state that has gone through at least one cpp_relex_step.)
|
|
DOC_PARAM(array, The original array that went through cpp_relex_step to be edited.)
|
|
|
|
DOC(After the first call to cpp_relex_step, the array's contents may have been changed,
|
|
this call assures the array is in it's original state. After this call the relex state
|
|
is dead.)
|
|
*/{
|
|
cpp_shift_token_starts(array, S_ptr->original_end_token_index, -S_ptr->character_shift_amount);
|
|
S_ptr->__pc__ = -1;
|
|
}
|
|
|
|
|
|
#if !defined(FCPP_FORBID_MALLOC)
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
API_EXPORT FCPP_LINK Cpp_Token_Array
|
|
cpp_make_token_array(int32_t starting_max)/*
|
|
DOC_PARAM(starting_max, The number of tokens to initialize the array with.)
|
|
DOC_RETURN(An empty Cpp_Token_Array with memory malloc'd for storing tokens.)
|
|
DOC(This call allocates a Cpp_Token_Array with malloc for use in other
|
|
convenience functions. Stacks that are not allocated this way should not be
|
|
used in the convenience functions.)
|
|
*/{
|
|
Cpp_Token_Array token_array;
|
|
token_array.tokens = (Cpp_Token*)malloc(sizeof(Cpp_Token)*starting_max);
|
|
token_array.count = 0;
|
|
token_array.max_count = starting_max;
|
|
return(token_array);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK void
|
|
cpp_free_token_array(Cpp_Token_Array token_array)/*
|
|
DOC_PARAM(token_array, An array previously allocated by cpp_make_token_array)
|
|
DOC(This call frees a Cpp_Token_Array.)
|
|
DOC_SEE(cpp_make_token_array)
|
|
*/{
|
|
free(token_array.tokens);
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK void
|
|
cpp_resize_token_array(Cpp_Token_Array *token_array, int32_t new_max)/*
|
|
DOC_PARAM(token_array, An array previously allocated by cpp_make_token_array.)
|
|
DOC_PARAM(new_max, The new maximum size the array should support. If this is not greater
|
|
than the current size of the array the operation is ignored.)
|
|
DOC(This call allocates a new memory chunk and moves the existing tokens in the array
|
|
over to the new chunk.)
|
|
DOC_SEE(cpp_make_token_array)
|
|
*/{
|
|
if (new_max > token_array->count){
|
|
Cpp_Token *new_tokens = (Cpp_Token*)malloc(sizeof(Cpp_Token)*new_max);
|
|
|
|
if (new_tokens){
|
|
memcpy(new_tokens, token_array->tokens, sizeof(Cpp_Token)*token_array->count);
|
|
free(token_array->tokens);
|
|
token_array->tokens = new_tokens;
|
|
token_array->max_count = new_max;
|
|
}
|
|
}
|
|
}
|
|
|
|
API_EXPORT FCPP_LINK void
|
|
cpp_lex_file(char *data, int32_t size, Cpp_Token_Array *token_array_out)/*
|
|
DOC_PARAM(data, The file data to be lexed in a single contiguous block.)
|
|
DOC_PARAM(size, The number of bytes in data.)
|
|
DOC_PARAM(token_array_out, The token array where the output tokens will be pushed.
|
|
This token array must be previously allocated with cpp_make_token_array)
|
|
DOC(Lexes an entire file and manages the interaction with the lexer system so that
|
|
it is quick and convenient to lex files.
|
|
|
|
CODE_EXAMPLE(
|
|
Cpp_Token_Array lex_file(char *file_name){
|
|
File_Data file = read_whole_file(file_name);
|
|
|
|
// This array will be automatically grown if it runs
|
|
// out of memory.
|
|
Cpp_Token_Array array = cpp_make_token_array(100);
|
|
|
|
cpp_lex_file(file.data, file.size, &array);
|
|
|
|
return(array);
|
|
})
|
|
|
|
)
|
|
DOC_SEE(cpp_make_token_array)
|
|
*/{
|
|
Cpp_Lex_Data S = cpp_lex_data_init();
|
|
int32_t quit = 0;
|
|
|
|
char empty = 0;
|
|
|
|
token_array_out->count = 0;
|
|
for (;!quit;){
|
|
int32_t result = cpp_lex_step(&S, data, size, HAS_NULL_TERM, token_array_out, NO_OUT_LIMIT);
|
|
switch (result){
|
|
case LexResult_Finished:
|
|
{
|
|
quit = 1;
|
|
}break;
|
|
|
|
case LexResult_NeedChunk:
|
|
{
|
|
Assert(token_array_out->count < token_array_out->max_count);
|
|
|
|
// NOTE(allen): We told the system we would provide the null
|
|
// terminator, but as it turned out we didn't actually. So in
|
|
// the next iteration pass a 1 byte chunk with the null terminator.
|
|
data = ∅
|
|
size = 1;
|
|
}break;
|
|
|
|
case LexResult_NeedTokenMemory:
|
|
{
|
|
// NOTE(allen): We told the system to use all of the output memory
|
|
// but we ran out anyway, so allocate more memory. We hereby assume
|
|
// the stack was allocated using cpp_make_token_array.
|
|
int32_t new_max = 2*token_array_out->max_count + 1;
|
|
cpp_resize_token_array(token_array_out, new_max);
|
|
}break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// BOTTOM
|